Mục lục:
Video: Giám sát nhiệt độ sử dụng MCP9808 và Photon hạt: 4 bước
2024 Tác giả: John Day | [email protected]. Sửa đổi lần cuối: 2024-01-30 13:33
MCP9808 là một bộ cảm biến nhiệt độ kỹ thuật số có độ chính xác cao ± 0,5 ° C I2C mini module. Chúng được bao gồm với các thanh ghi người dùng có thể lập trình để tạo điều kiện thuận lợi cho các ứng dụng cảm biến nhiệt độ. Cảm biến nhiệt độ có độ chính xác cao MCP9808 đã trở thành tiêu chuẩn công nghiệp về yếu tố hình thức và độ thông minh, cung cấp tín hiệu cảm biến được hiệu chỉnh, phân tuyến ở định dạng kỹ thuật số, I2C.
Trong hướng dẫn này, giao diện của mô-đun cảm biến MCP9808 với photon hạt đã được chứng minh. Để đọc các giá trị nhiệt độ, chúng tôi đã sử dụng raspberry pi với bộ điều hợp I2c. Bộ điều hợp I2C này giúp kết nối với mô-đun cảm biến dễ dàng và đáng tin cậy hơn.
Bước 1: Yêu cầu phần cứng:
Các tài liệu mà chúng tôi cần để hoàn thành mục tiêu của mình bao gồm các thành phần phần cứng sau:
1. MCP9808
2. Photon hạt
3. Cáp I2C
4. Tấm chắn I2C cho hạt photon
Bước 2: Kết nối phần cứng:
Phần kết nối phần cứng về cơ bản giải thích các kết nối dây cần thiết giữa cảm biến và hạt photon. Đảm bảo các kết nối chính xác là điều cần thiết cơ bản trong khi làm việc trên bất kỳ hệ thống nào để có kết quả đầu ra mong muốn. Vì vậy, các kết nối cần thiết như sau:
MCP9808 sẽ hoạt động trên I2C. Đây là sơ đồ đấu dây ví dụ, minh họa cách đấu dây cho từng giao diện của cảm biến.
Ngoài ra, bo mạch được định cấu hình cho giao diện I2C, vì vậy, chúng tôi khuyên bạn nên sử dụng kết nối này nếu bạn không có kiến thức khác. Tất cả những gì bạn cần là bốn dây!
Chỉ cần bốn kết nối là chân Vcc, Gnd, SCL và SDA và chúng được kết nối với sự trợ giúp của cáp I2C.
Các kết nối này được thể hiện trong các hình trên.
Bước 3: Mã đo nhiệt độ:
Hãy bắt đầu với mã hạt ngay bây giờ.
Trong khi sử dụng mô-đun cảm biến với arduino, chúng tôi bao gồm thư viện application.h và spark_wiring_i2c.h. "application.h" và thư viện spark_wiring_i2c.h chứa các chức năng hỗ trợ giao tiếp i2c giữa cảm biến và hạt.
Toàn bộ mã hạt được cung cấp dưới đây để thuận tiện cho người dùng:
#bao gồm
#bao gồm
// MCP9808 địa chỉ I2C là 0x18 (24)
#define Addr 0x18
float cTemp = 0, fTemp = 0;
void setup ()
{
// Đặt biến
Particle.variable ("i2cdevice", "MCP9808");
Particle.variable ("cTemp", cTemp);
// Khởi tạo giao tiếp I2C dưới dạng MASTER
Wire.begin ();
// Giao tiếp nối tiếp khởi tạo, đặt tốc độ truyền = 9600
Serial.begin (9600);
// Bắt đầu truyền I2C
Wire.beginTransmission (Addr);
// Chọn thanh ghi cấu hình
Wire.write (0x01);
// Chế độ chuyển đổi liên tục, mặc định Power-up
Wire.write (0x00);
Wire.write (0x00);
// Dừng truyền I2C
Wire.endTransmission ();
// Bắt đầu truyền I2C
Wire.beginTransmission (Addr);
// Chọn rgister độ phân giải
Wire.write (0x08);
// Độ phân giải = +0.0625 / C
Wire.write (0x03);
// Dừng truyền I2C
Wire.endTransmission ();
chậm trễ (300);
}
void loop ()
{
dữ liệu int không dấu [2];
// Bắt đầu giao tiếp I2C
Wire.beginTransmission (Addr);
// Chọn thanh ghi dữ liệu
Wire.write (0x05);
// Dừng truyền I2C
Wire.endTransmission ();
// Yêu cầu 2 byte dữ liệu
Wire.requestFrom (Addr, 2);
// Đọc 2 byte dữ liệu
// tạm thời msb, tạm thời lsb
if (Wire.available () == 2)
{
data [0] = Wire.read ();
data [1] = Wire.read ();
}
chậm trễ (300);
// Chuyển dữ liệu thành 13 bit
int temp = ((dữ liệu [0] & 0x1F) * 256 + dữ liệu [1]);
nếu (nhiệt độ> 4095)
{
nhiệt độ - = 8192;
}
cTemp = temp * 0,0625;
fTemp = cTemp * 1.8 + 32;
// Xuất dữ liệu ra bảng điều khiển
Particle.publish ("Nhiệt độ tính bằng C:", String (cTemp));
Particle.publish ("Nhiệt độ tính bằng F:", String (fTemp));
chậm trễ (500);
}
Hàm Particle.variable () tạo các biến để lưu trữ kết quả đầu ra của cảm biến và hàm Particle.publish () hiển thị kết quả đầu ra trên bảng điều khiển của trang web.
Đầu ra cảm biến được hiển thị trong hình trên để bạn tham khảo.
Bước 4: Ứng dụng:
Cảm biến nhiệt độ kỹ thuật số MCP9808 có một số ứng dụng cấp công nghiệp kết hợp tủ đông và tủ lạnh công nghiệp cùng với các bộ xử lý thực phẩm khác nhau. Cảm biến này có thể được sử dụng cho nhiều máy tính cá nhân, máy chủ cũng như các thiết bị ngoại vi PC khác.
Đề xuất:
Giám sát nhiệt độ bằng MCP9808 và Raspberry Pi: 4 bước
Giám sát nhiệt độ Sử dụng MCP9808 và Raspberry Pi: MCP9808 là một cảm biến nhiệt độ kỹ thuật số có độ chính xác cao ± 0,5 ° C I2C mini module. Chúng được bao gồm với các thanh ghi người dùng có thể lập trình để tạo điều kiện thuận lợi cho các ứng dụng cảm biến nhiệt độ. Cảm biến nhiệt độ có độ chính xác cao MCP9808 đã trở thành một ngành
Giám sát nhiệt độ bằng MCP9808 và Arduino Nano: 4 bước
Giám sát nhiệt độ Sử dụng MCP9808 và Arduino Nano: MCP9808 là một cảm biến nhiệt độ kỹ thuật số có độ chính xác cao ± 0,5 ° C I2C mini module. Chúng được bao gồm với các thanh ghi người dùng có thể lập trình để tạo điều kiện thuận lợi cho các ứng dụng cảm biến nhiệt độ. Cảm biến nhiệt độ có độ chính xác cao MCP9808 đã trở thành một ngành
Giám sát bảng điều khiển năng lượng mặt trời sử dụng hạt photon: 7 bước
Giám sát bảng điều khiển năng lượng mặt trời sử dụng hạt Photon: Mục tiêu của dự án là nâng cao hiệu quả của các tấm pin mặt trời. Dự án được thiết kế để giám sát việc phát điện quang điện mặt trời nhằm nâng cao hiệu suất, giám sát và bảo trì nhà máy năng lượng mặt trời.Trong dự án này, hạt ph
Giám sát chất lượng không khí sử dụng hạt Photon: 11 bước (có hình ảnh)
Giám sát chất lượng không khí sử dụng hạt Photon: Trong dự án này, cảm biến hạt PPD42NJ được sử dụng để đo chất lượng không khí (PM 2.5) có trong không khí với hạt Photon. Nó không chỉ hiển thị dữ liệu trên bảng điều khiển Particle và dweet.io mà còn cho biết chất lượng không khí bằng cách sử dụng đèn LED RGB bằng cách thay đổi nó
Giám sát phòng hội thảo sử dụng hạt photon: 8 bước (có hình ảnh)
Giám sát phòng hội thảo sử dụng hạt Photon: Giới thiệu Trong hướng dẫn này, chúng tôi sẽ thực hiện giám sát phòng họp bằng cách sử dụng hạt Photon. Trong Particle này được tích hợp với Slack bằng cách sử dụng Webhooks để nhận thông tin cập nhật theo thời gian thực về việc có phòng trống hay không. Cảm biến PIR được sử dụng để