Mục lục:
Video: Cảm biến áp suất Raspberry Pi CPS120 Hướng dẫn sử dụng Java: 4 bước
2024 Tác giả: John Day | [email protected]. Sửa đổi lần cuối: 2024-01-30 13:33
CPS120 là cảm biến áp suất tuyệt đối điện dung chất lượng cao và chi phí thấp với đầu ra được bù hoàn toàn. Nó tiêu thụ rất ít điện năng và bao gồm một cảm biến cơ điện tử siêu nhỏ (MEMS) để đo áp suất. ADC dựa trên sigma-delta cũng được bao gồm trong nó để đáp ứng yêu cầu của đầu ra được bù. Đây là phần trình diễn với mã java sử dụng Raspberry Pi.
Bước 1: Những gì bạn cần.. !
1. Raspberry Pi
2. CPS120
3. Cáp I²C
4. I²C Shield cho Raspberry Pi
5. Cáp Ethernet
Bước 2: Kết nối:
Lấy một tấm chắn I2C cho raspberry pi và nhẹ nhàng đẩy nó qua các chân gpio của raspberry pi.
Sau đó kết nối một đầu của cáp I2C với cảm biến CPS120 và đầu kia với tấm chắn I2C.
Đồng thời kết nối cáp Ethernet với pi hoặc bạn có thể sử dụng mô-đun WiFi.
Các kết nối được hiển thị trong hình trên.
Bước 3: Mã:
Có thể tải xuống mã java cho CPS120 từ kho lưu trữ github của chúng tôi- Dcube Store
Đây là liên kết cho cùng một:
github.com/DcubeTechVentures/CPS120/blob/master/Java/CPS120.java
Chúng tôi đã sử dụng thư viện pi4j cho mã java, các bước để cài đặt pi4j trên raspberry pi được mô tả ở đây:
pi4j.com/install.html
Bạn cũng có thể sao chép mã từ đây, nó được đưa ra như sau:
// Được phân phối với một giấy phép tự do.
// Sử dụng nó theo bất kỳ cách nào bạn muốn, lợi nhuận hoặc miễn phí, miễn là nó phù hợp với giấy phép của các tác phẩm liên quan.
// CPS120
// Mã này được thiết kế để hoạt động với Mô-đun nhỏ CPS120_I2CS I2C.
nhập com.pi4j.io.i2c. I2CBus;
nhập com.pi4j.io.i2c. I2CDevice;
nhập com.pi4j.io.i2c. I2CFactory;
nhập java.io. IOException;
lớp công khai CPS120
{
public static void main (String args ) ném Exception
{
// Tạo I2CBus
I2CBus bus = I2CFactory.getInstance (I2CBus. BUS_1);
// Lấy thiết bị I2C, địa chỉ CPS120 I2C là 0x28 (40)
Thiết bị I2CDevice = bus.getDevice (0x28);
// Gửi lệnh bắt đầu
device.write (0x28, (byte) 0x80);
Thread.sleep (800);
// Đọc 2 byte dữ liệu, msb trước
byte data = byte mới [2];
device.read (dữ liệu, 0, 2);
// Chuyển đổi dữ liệu sang kPa
áp suất kép = (((dữ liệu [0] & 0x3F) * 256 + dữ liệu [1]) * (90 / 16384,00)) + 30;
// Xuất dữ liệu ra màn hình
System.out.printf ("Áp suất là:%.2f kPa% n", áp suất);
}
}
Bước 4: Ứng dụng:
CPS120 có nhiều ứng dụng khác nhau. Nó có thể được sử dụng trong các khí áp kế di động và tĩnh, máy đo độ cao, v.v. Áp suất là một thông số quan trọng để xác định điều kiện thời tiết và xem xét rằng cảm biến này cũng có thể được lắp đặt tại các trạm thời tiết. Nó có thể được kết hợp trong hệ thống contol không khí cũng như hệ thống chân không.
Đề xuất:
Raspberry Pi - TSL45315 Cảm biến ánh sáng xung quanh Hướng dẫn sử dụng Java: 4 bước
Raspberry Pi - TSL45315 Cảm biến ánh sáng xung quanh Hướng dẫn sử dụng Java: TSL45315 là cảm biến ánh sáng xung quanh kỹ thuật số. Nó ước tính phản ứng của mắt người trong nhiều điều kiện ánh sáng khác nhau. Các thiết bị có ba thời gian tích hợp có thể lựa chọn và cung cấp đầu ra lux 16 bit trực tiếp thông qua giao diện bus I2C. Thiết bị đồng
Hướng dẫn sử dụng cảm biến áp suất và nhiệt độ Arduino AMS5812_0050-D-B: 4 bước
Hướng dẫn sử dụng cảm biến áp suất và nhiệt độ Arduino AMS5812_0050-D-B: Cảm biến áp suất khuếch đại AMS5812 với đầu ra tương tự và kỹ thuật số là một cảm biến có độ chính xác cao với đầu ra điện áp tương tự và giao diện I2C kỹ thuật số. Nó kết hợp một phần tử cảm biến piezoresistive với một phần tử điều hòa tín hiệu cho hoạt động của nó.
Cảm biến nhiệt độ Raspberry Pi MCP9803 Hướng dẫn sử dụng Java: 4 bước
Cảm biến nhiệt độ Raspberry Pi MCP9803 Hướng dẫn sử dụng Java: MCP9803 là cảm biến nhiệt độ có độ chính xác cao 2 dây. Chúng được bao gồm với các thanh ghi người dùng có thể lập trình để tạo điều kiện thuận lợi cho các ứng dụng cảm biến nhiệt độ. Cảm biến này phù hợp với hệ thống giám sát nhiệt độ đa vùng rất phức tạp. Ở đây
Cảm biến nhiệt độ Raspberry Pi MCP9805 Hướng dẫn sử dụng Java: 4 bước
Cảm biến nhiệt độ Raspberry Pi MCP9805 Hướng dẫn sử dụng Java: MCP9805 là một cảm biến nhiệt độ kỹ thuật số mô-đun bộ nhớ. Nó được kết hợp với các thanh ghi có thể lập trình của người dùng mang lại sự linh hoạt cho các ứng dụng cảm biến nhiệt độ. Cảm biến này được thiết kế để tích hợp trong mô-đun bộ nhớ nền tảng di động tem
Raspberry Pi - Cảm biến nhiệt độ TMP100 Hướng dẫn sử dụng Java: 4 bước
Raspberry Pi - Cảm biến nhiệt độ TMP100 Hướng dẫn sử dụng Java: TMP100 Độ chính xác cao, công suất thấp, cảm biến nhiệt độ kỹ thuật số Mô-đun I2C MINI. TMP100 lý tưởng để đo nhiệt độ kéo dài. Thiết bị này cung cấp độ chính xác ± 1 ° C mà không cần hiệu chuẩn hoặc điều chỉnh tín hiệu thành phần bên ngoài. Anh ta